Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle

نویسندگان

  • Natalie J. Nannas
  • Eileen T. O’Toole
  • Mark Winey
  • Andrew W. Murray
چکیده

The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro-tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore-microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stu2 Promotes Mitotic Spindle Elongation in Anaphase

During anaphase, mitotic spindles elongate up to five times their metaphase length. This process, known as anaphase B, is essential for correct segregation of chromosomes. Here, we examine the control of spindle length during anaphase in the budding yeast Saccharomyces cerevisiae. We show that microtubule stabilization during anaphase requires the microtubule-associated protein Stu2. We further...

متن کامل

Three-dimensional analysis and ultrastructural design of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae.

The three-dimensional organization of mitotic microtubules in a mutant strain of Saccharomyces cerevisiae has been studied by computer-assisted serial reconstruction. At the nonpermissive temperature, cdc20 cells arrested with a spindle length of approximately 2.5 microns. These spindles contained a mean of 81 microtubules (range, 56-100) compared with 23 in wild-type spindles of comparable len...

متن کامل

Regulation of Chromosome Attachment and Dynamics by Saccharomyces cerevisiae

Kinetochores are large, multi-protein complexes that bind centromeric DNA to the microtubules of the mitotic spindle and mediate chromosome movement throughout the cell cycle. The proteins that regulate both force generation at kinetochores as well as and the cell-cycle-dependent changes in kinetochore architecture are largely unknown. The relative simplicity of centromere specification and kin...

متن کامل

Absence of microtubule sliding and an analysis of spindle formation and elongation in isolated mitotic spindles from the yeast Saccharomyces cerevisiae

Mitotic spindles were isolated from a cell division cycle mutant of the budding yeast Saccharomyces cerevisiae by the lysis of sphateroplasts on an air:buffer interface and were negatively stained with 1% gold thioglucose. Isolated spindles were incubated under conditions which promoted the sliding disintegration of parallel preparations of Tetrahymena axonemes, namely the addition of ATP to 20...

متن کامل

Kinetochore biorientation in Saccharomyces cerevisiae requires a tightly folded conformation of the Ndc80 complex.

Accurate transmission of genetic material relies on the coupling of chromosomes to spindle microtubules by kinetochores. These linkages are regulated by the conserved Aurora B/Ipl1 kinase to ensure that sister chromatids are properly attached to spindle microtubules. Kinetochore-microtubule attachments require the essential Ndc80 complex, which contains two globular ends linked by large coiled-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014